If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+53k-24=0
a = 7; b = 53; c = -24;
Δ = b2-4ac
Δ = 532-4·7·(-24)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(53)-59}{2*7}=\frac{-112}{14} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(53)+59}{2*7}=\frac{6}{14} =3/7 $
| 8x-16-5x=13 | | 2x-1=3×(x+2)-6x | | 3÷x-4=X+2 | | 19x+x+4x-23x=18 | | 2x+10+x+35=180 | | 20=44–8(2–x) | | 12=30x+4 | | s*4+31=123 | | 5n+3n-5n-2n=8 | | 4x=8=2x=2 | | x+14+x+18=20 | | 3x+5+x=22-4x+7 | | m+5.6=11.3 | | 20q+-6q+-17q+20q-7q=-10 | | 8(x-6)=6(x-1) | | 9-w/10=6 | | 15m-11m-m=12 | | 6x-1=3(x-3)-4 | | 1200=200x+4.5 | | 16p+4p-18p+2p=12 | | 2x^2-5=20 | | -13+y=10 | | 20v-5v-11v=20 | | 19=d-5 | | -3x-6+7=10 | | 3x+21=4x-5 | | x-11/4=-10 | | 7a-4a=3 | | 9=7n-7n | | 200=2.50x+562.50 | | (3.2)^2x=8.45 | | 3e=8943 |